Table of Contents
Exercise 1.5 Solutions – Class X Mathematics
These solutions are based on the Telangana State Class X Mathematics textbook, focusing on logarithmic expressions and evaluations. Mathematical expressions are rendered using MathJax.
1. Determine the value of the following.
(i) \( \log_2 5 \)
Value = \( \log_2 5 \approx 2.322 \) (approximate)
(ii) \( \log_{81} 3 \)
Value = \(\frac{1}{4}\)
(iii) \( \log_2 \left(\frac{1}{16}\right) \)
Value = \(-4\)
(iv) \( \log_7 1 \)
Value = 0
(v) \( \log_{\sqrt{x}} x \)
Value = 2
(vi) \( \log_5 512 \)
Value = \(\log_5 512 \approx 3.879\) (approximate)
(vii) \( \log_{10} 0.01 \)
Value = \(-2\)
(viii) \( \log_2 \left(\frac{8}{27}\right) \)
Value = \(\log_2 \left(\frac{8}{27}\right) \approx -1.755\) (approximate)
(ix) \( 2^{2 + \log_3 3} \)
Value = 8
2. Write the following expressions as \( \log N \) and find their values.
(i) \( \log 2 + \log 5 \)
Value = 1
(ii) \( \log_2 16 – \log_2 2 \)
Value = 3
(iii) \( 3 \log_6 4 \)
Value = \(\log_6 64 \approx 2.322\) (approximate)
(iv) \( 2 \log 3 – 3 \log 2 \)
Value = \(\log \left(\frac{9}{8}\right) \approx 0.051\) (approximate)
(v) \( \log 10 + 2 \log 3 – \log 2 \)
Value = \(\log 45 \approx 1.653\) (approximate)
3. Evaluate each of the following in terms of \( x \) and \( y \), if it is given that \( x = \log_2 3 \) and \( y = \log_5 2 \).
(i) \( \log_2 15 \)
Value = \( x + \frac{x}{y} \)
(ii) \( \log_2 7.5 \)
Value = \( x + \frac{x}{y} – 1 \)
(iii) \( \log_2 60 \)
Value = \( 2 + x + \frac{x}{y} \)
(iv) \( \log_2 6750 \)
Value = \( 1 + 3x + 3 \frac{x}{y} \)
4. Expand the following.
(i) \( \log 1000 \)
Expanded = \( 3 \log 10 = 3 \)
(ii) \( \log \left(\frac{128}{625}\right) \)
Expanded = \( 7 \log 2 – 4 \log 5 \)
(iii) \( \log x^2 y^2 z^4 \)
Expanded = \( 2 \log x + 2 \log y + 4 \log z \)
(iv) \( \log \left(\frac{p^3 q^2}{r^4}\right) \)
Expanded = \( 3 \log p + 2 \log q – 4 \log r \)
(v) \( \log \left(\frac{\sqrt{x}}{y^2}\right) \)
Expanded = \( \frac{1}{2} \log x – 2 \log y \)
5. If \( x^2 + y^2 = 25x \), then prove that \( 2 \log(x + y) = 3 \log 3 + \log x + \log y \).
Conclusion: Proven true for appropriate \( x, y \).
6. If \( \log \left(\frac{x + y}{3}\right) = \frac{1}{2} (\log x + \log y) \), then find the value of \( \frac{x + y}{x – y} \).
Value = 3
7. If \( (2.3)^x = (0.23)^y = 1000 \), then find the value of \( \frac{1}{x} – \frac{1}{y} \).
Value = \(\frac{1}{x} – \frac{1}{y} \approx -1.196\) (approximate)
8. If \( 2^{x-1} = 3^{x} \) then find the value of \( x \).
Value = \( x \approx -1.709 \) (approximate)
9. Is
(i) \( \log 2 \) rational or irrational? Justify your answer.
Conclusion: \( \log 2 \) is irrational.
(ii) \( \log 100 \) rational or irrational? Justify your answer.
Conclusion: \( \log 100 \) is rational.