TG

15E /16E

SSC PUBLIC EXAMINATIONS, MARCH - 2025

MATHEMATICS PRINCIPLES OF VALUATION

General Instructions:

- Any logical method is valid. 1.
- Marks should be awarded according to the logical sequential 2. steps.
- Final answer is not the criteria for awarding marks. 3.
- Page wise marks should be noted in brackets otherwise 4. Nil.
- While entering the total marks fraction should be rounded 5. off to the next higher integer.
- In Section I, and Section II there is no choice. 6. In Section -III, Marks are to be awarded for any 4 questions. If choice questions are attempted, the answer scoring the better marks is to be considered and the one with lesser marks is to be written extra.
- The solutions given in the principles of Evaluation are suggestive and other solutions which are correct are also 7. to be considered for awarding marks.

TG

15E /16E

PART - A

11 5000 . 1.14

SECTION - I

1)	For writing the formula of area of a triangle	$1/_2 M$
	For calcutating area of a triangle	1 M
	For writing area of a triangle is zero hence the given points are collinear	$^{1}/_{2}M$
	points are confical	2 M

Solution: Points A (-6, 10) B (-4, 6) C (3,-8)

$$(x_1, y_1)$$
 (x_2, y_2) (x_3, y_3)
Area of triangle
$$= \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

$$= \frac{1}{2} |(-6)[6 - (-8)] + (-4)[(-8) - (10)] + 3(10 - 6)|$$

$$= \frac{1}{2} |-84 + 72 + 12| = 0$$

Since Area of triangle is Zero, the given points are collinear.

Note: Award marks even if it is proved using the concept of distance between two points or concept of slope.

2)	For writing the values of Sin 30° and Cos 60°	$^{1}/_{2}$ M
	For finding the sum and product of roots	$^{1}/_{2}$ M
	For writing the formula	$^{1}/_{2}$ M
	For writing the required quadratic equation	$^{1}/_{2}$ M

2 M

Solution:
$$\sin 30^{\circ} = \frac{1}{2}$$
 $\cos 60^{\circ} = \frac{1}{2}$

Sum of roots
$$= \frac{1}{2} + \frac{1}{2} = 1$$

Product of roots
$$=\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

Quadratic equation: $x^2 - x$ (sum of roots) + Product of roots = 0

$$x^2 - x(1) + \frac{1}{4} = 0$$

$$4x^2 - 4x + 1 = 0$$

is the required quadratic equation.

For identifying the values of a, l and s_n 3) $^{1}/_{2}M$ For writing the formula

For finding the value of 'n' and writing the conclusion

1 M

2 M

Solution:
$$l = 20$$

$$S_n = 399$$

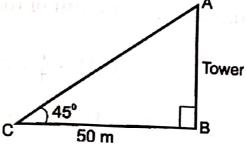
$$S_n = 39$$

$$n^{\frac{10}{100}} = ?$$

$$S_{n} = \frac{n}{2} [a+l]$$

399 =
$$\frac{n}{2}$$
 [1+20]
19
n = $\frac{399 \times 2}{21}$ =38

Number of terms in the given arthimetic progression is 38


For drawing the suitable diagram and labelling 4)

2 M2 M

Solution:

AB tower

C Position of observer

 $^{1}/_{2}$ M

For writing the condition

 $^{1}/_{2}$ M

For solving and finding the value of K

For finding the values of a_1,b_1,c_1,a_2,b_2,c_2

1 M

2 M

Solution:

5)

$$a_1 = 3k+1$$
 $b_1 = 3$ $c_1 = -2$
 $a_2 = k^2+1$ $b_2 = k-2$ $c_2 = -5$

$$b_1 = 3$$

$$c = -2$$

$$a_0 = k^2 + 1$$

$$b_2 = k-2$$

$$c_{0} = -5$$

Given pair of linear equations has no solutions $\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}$

$$\frac{3K+1}{K^2+1}$$
 $\times \frac{3}{K-2}$

 $3K^2 + 3 = 3K^2 - 6K + K - 2$ (after cross multiplication)

$$5K = -5$$

$$K = -1$$

6) For considering
$$r = 7k$$
 and $l = 25k$

 $^{1}/_{2}M$

For writing the formula

 $^{1}/_{2}M$

For doing calculations and finding the radius of Cone

1 M

2 M

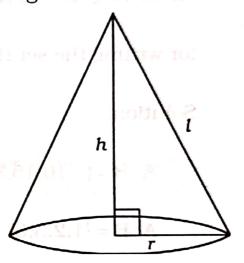
Solution: Ratio of radius and slant height

$$r: l = 7: 25$$
 (given)

C.S.A.
$$= 550 \text{ cm}^2$$

$$r = ?$$

Let
$$r = 7k$$
 and $l = 25k$


$$CSA = \pi r l$$

$$\frac{22}{7} \times 7k \times 25 k = 550$$

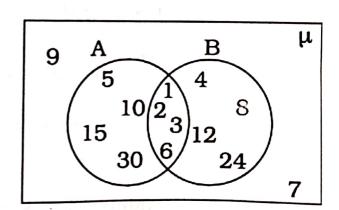
$$550k^2 = 550$$

$$k^2 = 1 \implies k = 1$$

radius (r) =
$$7k = 7 \times 1 = 7$$
 cm

Right Circular Cone

SECTION - II


7) for writing the set $A \cup B$	ल, इस के भीकी	1 M
for writing the set $A \cap B$. <u>amobrani</u> 1 M
for writing the set A–B		milwhe ² 1 M
for writing the set B-A		1 M
Solution:		4 M

 $A \cup B = \{5, 10, 15, 30, 1, 2, 3, 6, 4, 8, 12, 24\}$

$$A \cap B = \{1, 2, 3, 6\}$$

$$A-B = \{5,10,15,30\}$$

$$B-A = \{4,8,12,24\}$$

- 8) For finding the probability getting a red coloured king 1 M
 - For finding the probability getting a black coloured face card 1 M

For finding the probability getting a diamond card with no.11 1 M

For finding the probability getting queen of clubs

1 M

4 M

M Solution:

(i) P (Getting a red coloured King) = Number of favourable out comes

Number of total out comes

$$\frac{1}{(1) \cdot \dots \cdot (1)} = \frac{2}{52} = \frac{1}{26}$$

- (ii) P (Getting a black coloured face cards) $=\frac{6}{52} = \frac{3}{26}$
- (iii) P (Getting a diamond card with No. 11) $=\frac{0}{52}=0$

(: Imposible event)

(iv) P (Getting Queen of clubs)
$$=\frac{1}{52}$$

For substituting $Cot^2A = \frac{1}{\tan^2 A}$

1 M

For proving
$$\left(\frac{1+\tan^2 A}{1+\cot^2 A}\right) = \tan^2 A$$

1 M

For substituting $CotA = \frac{1}{\tan A}$

1 M

For proving
$$\left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$$

1 M

4 M

Solution:

$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \left(\frac{1 + \tan^2 A}{1 + \frac{1}{\tan^2 A}}\right)^2$$

$$= \frac{\tan^2 A \left(1 + \tan^2 A\right)}{\left(\tan^2 A + 1\right)} = \tan^2 A \qquad (1)$$

$$\left(\frac{1-\tan A}{1-\cot A}\right)^2 = \left(\frac{1-\tan A}{1-\frac{1}{\tan A}}\right)^2$$

$$= \left(\frac{-1}{(1-\tan A)\tan A}\right)^2$$

$$= \left(-\tan A\right)^2 = \tan^2 A \dots (2)$$

From 1 & 2
$$\left(\frac{1+\tan^2 A}{1+\cot^2 A}\right) = \left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$$

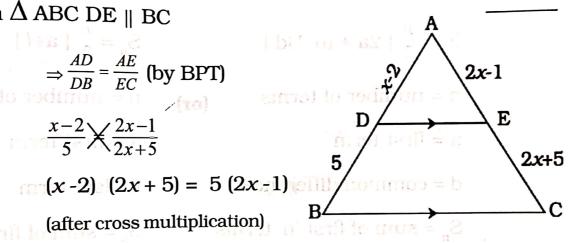
- 8 -

For identifying that B.P.T. is to be used and 10) writing $\frac{AD}{DR} = \frac{AE}{EC}$

1 M

For simplification and obtaining quadratic equation $1^{-1}/_{2}$ M For solving quadratic equation and finding the value of $^{\prime}x^{\prime}$ $1^{1}/_{2}$ M Solution:

4 M


In \triangle ABC DE \parallel BC

$$\Rightarrow \frac{AD}{DB} = \frac{AE}{EC}$$
 (by BPT)

$$\frac{x-2}{5}$$
 $\times \frac{2x-1}{2x+5}$

$$(x-2)(2x+5) = 5(2x-1)(-11)$$

(after cross multiplication)

$$2x^2 + 5x - 4x - 10 = 10x - 5$$

$$2x^2 - 9x - 5 = 0$$

$$2x^2 - 10x + x - 5 = 0$$

$$2x(x-5)+1(x-5)=0$$

$$(x-5)(2x+1) = 0$$
 quantum olympia bolgum interpret

$$x = 5 \text{ or } x = -\frac{1}{2}$$

but x value can't be $-\frac{1}{2}$ as length can't be negetive.

So, x = 5 is the required solution. (a) (x) = 5 is the required solution.

TG

15E /16E

For writing the formula for sum of first 'n' terms of 11) an arithmetic progression

2 M

For writing each term in it @ $^{1}/_{2}$ M $4 \times ^{1}/_{2} = 2 M$

Solution:

4 M

Sum of first 'n' terms of an arithmetic progression

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_n = \frac{n}{2} [a+l]$$

n = number of terms

(or)

n = number of terms

a = first term

a = first term

d = common difference l = last term

 $S_n = \text{sum of first 'n' terms}$ $S_n = \text{sum of first 'n' terms}$

For writing formula of distance between 2 points 12)

 $^{1}/_{2}$ M

For finding the lengths of sides AB, BC and CA (Each 1M)

 $3 \times 1 = 3M$

For proving $(AB)^2 + (BC)^2 = (AC)^2$ concluding that it is a right angled triangle and specifying reason

 $^{1}/_{2}$ M

Solution:

4 M

A (-4, 2) B (2, -4) C (12, 6)

if (x_1, y_1) (x_2, y_2) are any two points then the distance between those two points

Length of side AB
$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(2 - (-4))^2 + (-4 - 2)^2}$$

$$= \sqrt{(6)^2 + (-6)^2} = \sqrt{36 + 36}$$

$$= \sqrt{72}$$
Length of side BC
$$= \sqrt{(12 - 2)^2 + (6 - (-4))^2}$$

$$= \sqrt{(10)^2 + (10)^2} = \sqrt{100 + 100}$$

$$= \sqrt{200}$$
Length of side AC
$$= \sqrt{(12 - (-4))^2 + (6 - 2)^2}$$

$$= \sqrt{(16)^2 + (4)^2} = \sqrt{256 + 16}$$

$$\left(\sqrt{72}\right)^2 + \left(\sqrt{200}\right)^2 = \left(\sqrt{272}\right)^2$$

i.e.,
$$(AB)^2 + (BC)^2 = (AC)^2$$

∴ So, it is a right angled triangle (by converse of Pythagoras theorem)

 $=\sqrt{272}$

_ 11 🛏

SECTION - III

For showing calculations and finding the values y

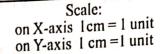
For finding the points of the given polynomial

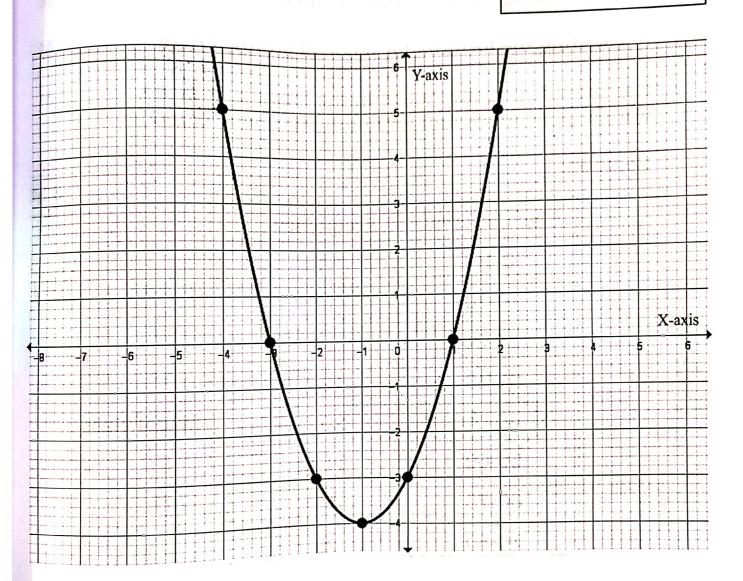
For plotting the points on a graph sheet

I M

For joining the points and drawing a parabola

I M


For finding the Zeroes from the graph


I M

6 M

Solution: $y = p(x) = x^2 + 2x - 3$

				J. J	11.5		N.
х	-4	-3	-2	-1	0	1	2
x ²	16	9	4	1	0	1	4
2x	-8	- 6	-4	-2	0	2	4
-3.	-3	-3	-3	-3	-3	-3	-3
у	5	0	-3	-4	-3	0	5
(x,y)	(-4, 5)	(-3,0)	(-2,-3)	(-1,-4)	(0,-3)	(1,0)	(2,5)

Zeroes of the Polynominal are - 3 and 1

14) For identifying modal class

 $^{1}/_{2}$ M

For identifying l, f_0, f_1, f_2 and h values

 $1^{-1}/_{2}M$

For writing the formula for mode of grouped data

1 M

For substituting the values in the formula of mode. For simplifications and for finding the value of mode

3 M

Solution:

6 M

Frequency
7
14
13
$12 f_0$
$20 f_1$
$11f_2$
15
8

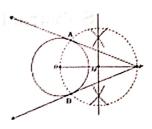
modal class

$$l = 40$$
, $f_0 = 12$, $f_1 = 20$, $f_2 = 11$, $h = 10$

$$= l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 40 + \left(\frac{20 - 12}{2(20) - 12 - 11}\right) \times 10$$

$$= 40 + \left(\frac{8}{40 - 23}\right) \times 10$$


$$= 40 + \frac{80}{17}$$

= 44.7

1 M For drawing Rough diagram 15) 3 M For doing construction as per given data 2MFor writing steps of construction contrate 6 M Construction:

Rough Diagram

_ 15 -

Steps of Construction:

- 1. Draw a circle of radius 3 cm.
- 2. Locate the point 'P' at a distance of 8 cm from the centre of the circle 'O' and join O, P.
- 3. Draw a perpendicular bisector for the line segment OP which intersets it at point M.
- 4. Consider M as centre and MO as the radius draw a circle, which cuts the previous circle at points A and B.
- 5. Draw PA and PB which are required tangents
- 16) For selecting appropriate procedure and extending the 3 M procedure

For making logical argument and writing the proof

3 M

6 M

Solution:

Rough Diagram

$$x^2 + y^2 = 27xy \text{ (Given)}$$

Substracting 2xy on both sides

$$x^2 + y^2 - 2xy = 27xy - 2xy$$

$$(x-y)^2 = 25 xy$$

Applying 'log' on both sides

$$\log (x-y)^2 = \log (25xy)$$

$$= \log (5^2 \times x \times y)$$

$$2 \log (x-y) = \log 5^2 + \log x + \log y$$

$$= 2 \log 5 + \log x + \log y$$

Alternative Solution:

LHS
$$2 \log (x - y)$$
 = $\log (x - y)^2$
= $\log (x^2 + y^2 - 2xy)$
= $\log (27xy - 2xy) (\because x^2 + y^2 = 27xy \text{ given})$
= $\log (25xy)$
= $\log 25 + \log x + \log y$
= $\log 5^2 + \log x + \log y$
= $2 \log 5 + \log x + \log y$
= RHS

(iii) P is the mid - point of AQ = $\frac{2}{3}$ $\frac{1}{3}$

		15E	/16
TG	are needed to make it	1	M
17)	For identifying three points are needed to make it four equal parts		
	For finding the co-ordinates of point P	1 1/2	M
	For finding the co-ordinates of point Q	$1^{-1}/_{2}$	M
	For finding the co-ordinates of point R	$1^{-1}/_{2}$	M
	For conclusion		M
			5 N

Solution:

Line segment AB is to be made into four equal parts for which w need 3 points say P,Q, and R.

(i) Q is the mid - point of AB =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

= $\left(\frac{-2 + 2}{2}, \frac{2 + 8}{2}\right)$
= $\left(\frac{0}{2}, \frac{10}{2}\right) = (0, 5)$

(ii) P is the mid - point of AQ =
$$\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)$$

- 18 -

$$= \left(\frac{-2}{2}, \frac{7}{2}\right) = \left(-1, \frac{7}{2}\right)$$

(iii) R is the mid - point of QB =
$$\left(\frac{0+2}{2}, \frac{5+8}{2}\right)$$

$$= \left(\frac{2}{2}, \frac{13}{2}\right) = \left(1, \frac{13}{2}\right)$$
migetimal to ASD a robindy ato ASD as form a definite robin

.. The required points are (0,5) $\left(-1,\frac{7}{2}\right)$ and $\left(1,\frac{13}{2}\right)$ to make the given line segment into 4 equal parts.

Note: Award marks even if this problem is solved by using section formula with ratios 1:3, 1:1 and 3:1, and further 1:1 means midpoint only.

18) For drawing suitable diagram

 $^{1}/_{2}M$

For writing outer surface area is sum of CSAs of _______1/2 M cone and cylinder

For finding CSA of cylinder

1 M

For finding the CSA of hemi sphere

1 M

For writing the QE

 $1^{1}/_{2}M$

15E /16E

For solving the QE and finding radius

1 M

For concluding that radius is positive

 $^{1}/_{2}M$

6 M

Solution: Outer surface area = 748cm^2

Outer surface area = CSA of cylinder + CSA of hemisphere .. (1)

CSA of cylinder = $2\pi rh^{2}$ is already beautiful control of the cylinder in the cylinder in

compare galeriard bridge =
$$2 \times \frac{22}{7} \times r \times 10$$
) is a constant of the first transfer to $\frac{1}{2}$

$$=\frac{440r}{7}$$
.....(2)

10 cm

CSA of Hemisphere= $2\pi r^2$

$$=2\times\frac{22}{7}\times r^2=\frac{44}{7}r^2....(3)$$

Substitute in equation (1), we get

$$\frac{44}{7}r^2 + \frac{440}{7}r = 748$$
 [from (2) and (3)]

$$\frac{44}{7} (r^2 + 10r) = 748$$

$$r^2 + 10r = \frac{17}{748} \times \frac{7}{44}$$

$$r^2 + 10r - 119 = 0$$

$$r^2 + 17r - 7r - 119 = 0$$

$$r(r+17) - 7(r+17) = 0$$

$$(r-7)(r+17)=0$$

$$r = 7$$
 (or) $r = -17$

but radius can't be negative

So, r = 7cm is the required solution

J

PART - B

		A. Carrier and the second
	1.	B
•	2.	C
	3.	D
	4.	D
2	5.	0 = A
1	6. ,	A
	7	C
	8.	В
, J	9.	D
	10.	B
	1 187	

A	
11.	C
12.	В
13.	D
14.	A
√(+ 1) 15.	С
16.	В
17.	A
18.	A
19.	C
20.	D

This Question Paper contains 4 Printed Pages.

536970

15E/16E(A)

MATHEMATICS

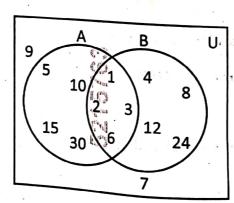
(English Version) (Parts A and B)

	ne: 3 Hours]	Roll Numbe	r:	logir i		[Maximu	m Marks : 80
<i>Ins</i> 1.	tructions : Answer all the	Questions of P	art – A on a	separate	e answer bo	ook.	
2.	Write the ans	wers to the Que answer book o	estions und of Part – A .	der Part	– Bonthe	e Question pa	per itself and
			PART -	- A 30 (230)	Section of	our na trail	45,
Tin	ne : 2 Hours 30 m	inutes]	Ç	*)			[Marks : 60
				Sje en	4.1 0.1	er Vein	
			SECTION	()	,	H (6 × 2	2 = 12 Marks)
	Notes: (1) A	nswer all the fo	llowing que	stions.	4		
		ach question ca	5	100	01		
1.		points A(–6, 10)					
2.		atic equation wh					
3.	terms is 399, th	ic progression, nen find the nun					
4.	"An observer s top at an angle				1000	W chart at	observes its
15E/	top at an angle	of elev	1			•	P.T.O.

5. If the pair of linear equations:

$$(3k+1)x+3y-2=0$$

and


 $(k^2 + 1)x + (k - 2)y - 5 = 0$ has no solutions, then find the value of k.

The ratio of radius and slant height of a Right circular cone is 7:25. If its curved surface 6.

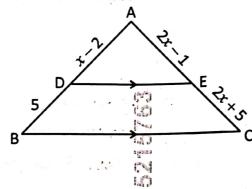
 $(6 \times 4 = 24 \text{ Marks})$

- Notes : *(1)* Answer all the following questions.
 - Each question carries 4 marks. (2)
- 7. From the given Venn diagram, find the sets

 $A \cup B$, $A \cap B$, A - B and B - A.

From a well shuffled deck of cards if a card is selected randomly, then find the 8. probability of getting

4.00


- A red coloured king (i)
- A black coloured face card (ii)
- A diamond card with number 11 on it (iii)
- (iv) Queen of clubs

9. Show that

$$\left[\frac{1+\tan^2 A}{1+\cot^2 A}\right] = \left[\frac{1-\tan A}{1-\cot A}\right]^2 = \tan^2 A$$

10. In ΔABC, DE | BC.

If AD = x - 2, DB = 5, AE = 2x - 1, EC = 2x + 5, then find the value of x.

- 11. Write the formula for the sum of first 'n' terms of an arithmetic progression and explain each term in it.
- 12. Show that the triangle with vertices

A(-4, 2), B(2, -4) and C(12, 6) forms a Right angled triangle.

 $(4 \times 6 = 24 \text{ Marks})$

- Notes: (1) Answer any 4 questions from the given six questions.
 - (2) Each question carries 6 marks.
- 13. Draw the graph of the polynomial $p(x) = \frac{x^2}{x^2} + 2x 3$ and find zeroes of the polynomial from the graph.
- 14. Find the mode of the following data:

	Class Interval 0.10 10-20 20-30 30-40 40-50 50-60 60							
Class Interval	0-10	10-20	20 00		40 30	30 00		Q
Frequency	7	14	13	12	20	11	15	8

P.T.O.

15E/16E(A)

Roll Number:

15. Draw a circle of radius 3 cm. Construct a pair of tangents to the circle from an external point which is at a distance of 8 cm from the centre of the circle.

If $x^2 + y^2 = 27xy$, then show that $2 \log (x - y) = 2 \log 5 + \log x + \log y$.

- Find the coordinates of the points which divide the line segment joining the points 17. A(-2, 2) and B(2, 8) into four equal parts.
- A metallic vessel is in the shape of a cylinder surmounted over a hemisphere. The radii of cylinder and hemisphere are same and the height of the cylindrical part is 10 cm. If the outer surface area of the vessel is 748 cm², then find their radii.

)

15E/16E(B)

MATHEMATICS

(English Version) (Parts A and B)

Time: 3 Hours]						[Maximum Marks : 80							
Mair	Main Answer Book Number :						Signature of the Invigilator :						
Insti	ructioi	n:		e answer ch it to th					t – B on	the Que	stion Pa	per its	elf
		*				PAR1	<u>– В</u>				r (5		
Time	e : 30 i	minu	ites]							. F	[M	arks : 2	? 0
			o suley s	or pa	e .		· in	s is a Wi	80		W 1.		
Note	es:						•						
	(1)	All	question	s are to b	e answer	ed.	•						
	(2)	Eac	ch questic	on carries	1 mark.		iX:		4 40		car of		
	(3)	An	swers are	to be wr	itten in th	ie Que	stion	paper o	nly.		· · · · · · · · · · · · · · · · · · ·		
	(4)	Ma	ırks will n	ot be give	en for ove	er-writ	ing, re	writing	or eras	ed answ	ers.	•	
			, 1										
l. '	Writ	e the	CAPITAL	LETTER	(A, B, C,	D) of t	he co	rrect ar	iswer in	the bra	ckets pr	ovided	
	agair	nst e	ach quest	tion.		•					(20	×1 =	20)
	1.	Set	builder f	orm of th	e set {1,	2, 3, 4,	5}					ָ []
		(A)		W and C						$0 < x \le 3$		15.	
		(C)	$\{x:x\in$	W and C	$0 \le x \le 5\}$		(D)	$\{x:x\in$	∈ W and	$0 \le x < 1$	5}		
								nt v=		4.	h mus	6	_
	2.	The	$=\frac{p}{a}(q \neq 0)$	form of	0.125 is							ı	1
		(A)	125		r 'yw	A CONTRACTOR OF THE PARTY OF TH	(B)	125 100			31 33		
		(~)	10			100		0.125		1000, 10	P/JEW	J.F.	
		(C)	125 1000	(i)			(D)	100	etelle nd digte	is bas is	19 0 101 0		
15E	/16E	(B)				1						P.T	.0.

- In a random experiment E and \overline{E} are complementary events. If P(E) = 0.43, then the value of P(E) is
 - 0.53 (A)

(B) 0.47

(C) 0.43

- 0.57 (D)
- $A = \{x : x \text{ is a letter of the word "RAMANUJAN"}\}, then n(A) = ?$

]

(A)

(B)

(C) 7

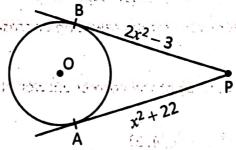
- (D) 6
- The quadratic equation, whose sum of the roots is 5 and product of the roots is 6, is
 - (A) $x^2 5x + 6 = 0$

(B) $x^2 + 5x + 6 = 0$

- (C) $x^2 6x + 5 = 0$ (D) $x^2 + 6x + 5 = 0$
- Centroid of the triangle with vertices A(0, 4), B(4, -2) and C(5, 10) is

 - (A) (3, 4)

(B) (3, 3)


(C) (4, 3)

- (D) (4, 4)
- If one root of a quadratic equation $x^2 5x + k = 0$ is 2, then the value of k is 7.
 - (B)

(A)

(C) 6

- (D) -6
- The lengths of tangents from an external point P to a circle with centre 'O' are 8. $2x^2 - 3$ and $x^2 + 22$, then the value of x is

(A)

(B) 5

- 9. Sum of first 10 terms of arithmetic progression log 3, log 9, log 27,is
 - (A) 45 log 3

90 log 3 (B)

(C) 10 log 3

- (D) 55 log 3
- 10. Nature of roots of a quadratic equation $x^2 - 4x + 4 = 0$ is

]

- (A) Real and distinct
- Real and equal , (B)
- (C) Not Real and distinct
- Not Real and equal (D)

- The median of factors of 36 is 11.

(C)

- (B) (B) 9
- Among the following, a pair of inconsistent equations is (A) x + 2y = 5, 2x + 4y = 10

]

]

]

- (C) x + 2y = 5, 4x + 2y = 8 (B) x + 2y 3, 2x + 4y = 10 (D) 2x + y = 4, 2x + 4y = 10
- 13. If $\sin \alpha = \frac{\sqrt{3}}{2}$ and $\cos \beta = \frac{\sqrt{3}}{2}$ (0° < α , β < 90°), then the value of $\tan(\alpha \beta)$ is (A) $\sqrt{3}$

(C)

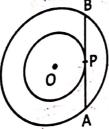
- (D) $\frac{1}{\sqrt{3}}$
- A ladder of length 10 m is leaning against a wall. If it touches the wall at height of 5 m, then the angle made by the ladder with the ground is
 - (A) 30°
- Sheller to the ways (B) 160° to the light the configuration
- 45° (C)

- 90° (D)
- The area of one face of a cube is 25 cm², then its volume is (in cm³)

(A) 150

125 (C)

- (D) 200
- 16. If $\frac{1}{x} + \frac{1}{y} = \frac{5}{6}$ and $\frac{1}{x} \frac{1}{y} = \frac{1}{6}$, then the values of x and y respectively are



(A) $\frac{1}{2}, \frac{1}{3}$

(C) $\frac{1}{3}, \frac{1}{2}$

- The radii of two concentric circles with centre 'O' are 8 cm and 10 cm. If the chord AB of larger circle is a tangent to the smaller circle at P, then the length of 1

chord AB is

- 6 cm (B)
- (D) 9 cm

(C) 18 cm

12 cm

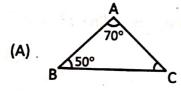
(A)

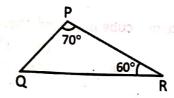
P.T.O.

15E/16E(B)

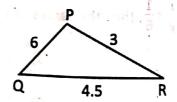
- 18. Among the following, which is an example for a certain (sure) event?
 - (A) Getting a black ball when a ball is selected randomly from a bag
 - (B) Getting a white ball when a ball is selected randomly from a bag containing black balls.
 - (C) Getting a black ball when a ball is selected randomly from a bag containing 3 black and 4 white balls.
 - (D) Not getting a white ball when a ball is selected randomly from a bag containing 3 black and 4 white balls.
- 19. If $p(x) = 2x^2 5x + 6$, then $p(1) + p(-1) = _____.$

[]

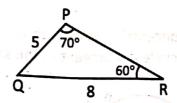

(A) 3

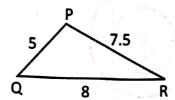

(B) 13

(C) 16


- (D) 10
- 20. Among the following, which pair of triangles are not similar?

[




(B) 2 3

(C) 350° 4

(D) 2 3

MARCH, 2025