Table of Contents
Exercise 11.2 Solutions
Class X Mathematics textbook by the State Council of Educational Research and Training, Telangana, Hyderabad
1. Evaluate the following:
Solution:
We know that \(\sin 45^\circ = \frac{1}{\sqrt{2}}\) and \(\cos 45^\circ = \frac{1}{\sqrt{2}}\)
\(\sin 45^\circ + \cos 45^\circ = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}\)
Solution:
First, let’s evaluate each trigonometric function:
- \(\sin 30^\circ = \frac{1}{2}\)
- \(\tan 45^\circ = 1\)
- \(\csc 60^\circ = \frac{2}{\sqrt{3}}\)
- \(\cot 45^\circ = 1\)
- \(\cos 60^\circ = \frac{1}{2}\)
- \(\sec 30^\circ = \frac{2}{\sqrt{3}}\)
Numerator: \(\frac{1}{2} + 1 – \frac{2}{\sqrt{3}} = \frac{3}{2} – \frac{2}{\sqrt{3}}\)
Denominator: \(1 + \frac{1}{2} – \frac{2}{\sqrt{3}} = \frac{3}{2} – \frac{2}{\sqrt{3}}\)
Thus, the expression becomes \(\frac{\frac{3}{2} – \frac{2}{\sqrt{3}}}{\frac{3}{2} – \frac{2}{\sqrt{3}}} = 1\)
Solution:
We know the trigonometric identities:
- \(\sec^2 \theta – \tan^2 \theta = 1\)
- \(\sin^2 \theta + \cos^2 \theta = 1\)
Numerator: \(\sec^2 60^\circ – \tan^2 60^\circ = 1\) (by identity)
Denominator: \(\sin^2 30^\circ + \cos^2 30^\circ = 1\) (by identity)
Thus, the expression becomes \(\frac{1}{1} = 1\)
2. Choose the right option and justify your choice:
Options:
(a) \(\sin 60^\circ\) (b) \(\cos 60^\circ\) (c) \(\tan 30^\circ\) (d) \(\sin 30^\circ\)
Solution:
Evaluate each part:
\(\tan 30^\circ = \frac{1}{\sqrt{3}}\), \(\tan 45^\circ = 1\)
Numerator: \(2 \times \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}\)
Denominator: \(1 + 1^2 = 2\)
Expression: \(\frac{2/\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \approx 0.577\)
Now evaluate options:
(d) \(\sin 30^\circ = 0.5\)
But \(\frac{1}{\sqrt{3}} \approx 0.577\) which is \(\sin 30^\circ\) plus some difference
Actually, \(\frac{1}{\sqrt{3}} = \tan 30^\circ\), but that’s option (c)
However, \(\sin 30^\circ = 0.5\) and our result is 0.577, which matches none exactly
But \(\frac{1}{\sqrt{3}} = \tan 30^\circ\), so correct answer is (c) \(\tan 30^\circ\)
Options:
(a) \(\tan 90^\circ\) (b) 1 (c) \(\sin 45^\circ\) (d) 0
Solution:
\(\tan 45^\circ = 1\)
Numerator: \(1 – 1^2 = 0\)
Denominator: \(1 + 1^2 = 2\)
Expression: \(\frac{0}{2} = 0\)
Correct answer is (d) 0
Options:
(a) \(\cos 60^\circ\) (b) \(\sin 60^\circ\) (c) \(\tan 60^\circ\) (d) \(\sin 30^\circ\)
Solution:
This is the double angle formula for tangent:
\(\frac{2 \tan \theta}{1 – \tan^2 \theta} = \tan 2\theta\)
Here \(\theta = 30^\circ\), so expression equals \(\tan 60^\circ\)
Correct answer is (c) \(\tan 60^\circ\)
3. Evaluate \(\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ\). What is the value of \(\sin(60^\circ + 30^\circ)\). What can you conclude?
Solution:
First part:
\(\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1\)
Second part:
\(\sin(60^\circ + 30^\circ) = \sin 90^\circ = 1\)
Conclusion:
This demonstrates the angle addition formula: \(\sin(A + B) = \sin A \cos B + \cos A \sin B\)
4. Is it right to say that \(\cos(60^\circ + 30^\circ) = \cos 60^\circ \cos 30^\circ – \sin 60^\circ \sin 30^\circ\)?
Solution:
Left side: \(\cos(60^\circ + 30^\circ) = \cos 90^\circ = 0\)
Right side: \(\cos 60^\circ \cos 30^\circ – \sin 60^\circ \sin 30^\circ = \frac{1}{2} \times \frac{\sqrt{3}}{2} – \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4} – \frac{\sqrt{3}}{4} = 0\)
Both sides equal 0, so the statement is correct. This demonstrates the cosine addition formula: \(\cos(A + B) = \cos A \cos B – \sin A \sin B\)
5. In right angle triangle \(\triangle PQR\), right angle is at \(Q, PQ = 6 \text{cm}\) and \(\angle RPQ = 60^\circ\). Determine the lengths of \(QR\) and \(PR\).
Diagram description:
Right triangle PQR with right angle at Q. Points are ordered P-Q-R clockwise or counterclockwise. PQ is the side adjacent to the 60° angle at P, QR is opposite the 60° angle, and PR is the hypotenuse.
Solution:
Given:
- Right angle at Q
- PQ = 6 cm
- \(\angle RPQ = 60^\circ\)
Using trigonometric ratios:
\(\tan 60^\circ = \frac{QR}{PQ} \Rightarrow QR = PQ \times \tan 60^\circ = 6 \times \sqrt{3} = 6\sqrt{3} \text{ cm}\)
\(\cos 60^\circ = \frac{PQ}{PR} \Rightarrow PR = \frac{PQ}{\cos 60^\circ} = \frac{6}{0.5} = 12 \text{ cm}\)
Thus, QR = \(6\sqrt{3}\) cm and PR = 12 cm
6. In \(\triangle XYZ\), right angle is at \(Y, YZ = x\), and \(XZ = 2x\). Then determine \(\angle YXZ\) and \(\angle YZX\).
Diagram description:
Right triangle XYZ with right angle at Y. Points are ordered X-Y-Z clockwise or counterclockwise. YZ is one leg (length x), XY is the other leg, and XZ is the hypotenuse (length 2x).
Solution:
Given:
- Right angle at Y
- YZ = x
- XZ = 2x (hypotenuse)
First, find XY using Pythagorean theorem:
\(XY = \sqrt{XZ^2 – YZ^2} = \sqrt{(2x)^2 – x^2} = \sqrt{4x^2 – x^2} = \sqrt{3x^2} = x\sqrt{3}\)
Now find angles:
\(\sin \angle YXZ = \frac{YZ}{XZ} = \frac{x}{2x} = \frac{1}{2} \Rightarrow \angle YXZ = 30^\circ\)
\(\angle YZX = 90^\circ – \angle YXZ = 90^\circ – 30^\circ = 60^\circ\)
Thus, \(\angle YXZ = 30^\circ\) and \(\angle YZX = 60^\circ\)
7. Is it right to say that \(\sin (A + B) = \sin A + \sin B\)? Justify your answer.
Solution:
No, this is not correct in general. The correct formula is \(\sin(A + B) = \sin A \cos B + \cos A \sin B\).
Counterexample: Let A = 30° and B = 60°
\(\sin(30^\circ + 60^\circ) = \sin 90^\circ = 1\)
But \(\sin 30^\circ + \sin 60^\circ = 0.5 + \frac{\sqrt{3}}{2} \approx 0.5 + 0.866 = 1.366\)
Clearly, 1 ≠ 1.366, so the statement is false.
The correct relationship is the angle addition formula: \(\sin(A + B) = \sin A \cos B + \cos A \sin B\)