10th Maths Statistics Exercise 14.3 Solutions

Exercise 14.3 Solutions – Class X Mathematics

Exercise 14.3 Solutions

Class X Mathematics – State Council of Educational Research and Training, Telangana, Hyderabad

1. Electricity Consumption Problem

Monthly consumption 65-85 85-105 105-125 125-145 145-165 165-185 185-205
Number of consumers 4 5 13 20 14 8 4

Solution:

Median:

First, we calculate cumulative frequencies:

ClassFrequencyCumulative Frequency
65-8544
85-10559
105-1251322
125-1452042
145-1651456
165-185864
185-205468

Median class is where cumulative frequency ≥ n/2 = 34 → 125-145

Using median formula:

Median = L + [(n/2 – CF)/f] × h

Where L = 125, n = 68, CF = 22, f = 20, h = 20

Median = 125 + [(34 – 22)/20] × 20 = 125 + 12 = 137

Mean:

Using assumed mean method with A = 135:

ClassMidpoint (x)Frequency (f)d = (x – A)/hf × d
65-85754-3-12
85-105955-2-10
105-12511513-1-13
125-1451352000
145-16515514114
165-1851758216
185-2051954312
Total7

Mean = A + (Σfd/Σf) × h = 135 + (7/68) × 20 ≈ 137.06

Mode:

Modal class is 125-145 (highest frequency = 20)

Using mode formula:

Mode = L + [(f₁ – f₀)/(2f₁ – f₀ – f₂)] × h

Where L = 125, f₁ = 20, f₀ = 13, f₂ = 14, h = 20

Mode = 125 + [(20 – 13)/(40 – 13 – 14)] × 20 ≈ 125 + (7/13) × 20 ≈ 135.77

Comparison: Mean (137.06) > Median (137) > Mode (135.77)

2. Median Problem with Missing Frequencies

Class interval 0-10 10-20 20-30 30-40 40-50 50-60
Frequency 5 x 20 15 y 5

Given median = 28.5, n = 60

Solution:

Total observations: 5 + x + 20 + 15 + y + 5 = 60 ⇒ x + y = 15

Median class is where cumulative frequency ≥ n/2 = 30 → 20-30

Using median formula:

28.5 = 20 + [(30 – (5 + x))/20] × 10

8.5 = (25 – x)/2 ⇒ 17 = 25 – x ⇒ x = 8

Since x + y = 15 ⇒ y = 7

Solution: x = 8, y = 7

3. Insurance Policy Holders Age Distribution

Age (in years) Below 20 Below 25 Below 30 Below 35 Below 40 Below 45 Below 50 Below 55 Below 60
Number of policy holders 2 6 24 45 78 89 92 98 100

Solution:

First convert to frequency distribution:

ClassFrequencyCumulative Frequency
18-2022
20-2546
25-301824
30-352145
35-403378
40-451189
45-50392
50-55698
55-602100

Median class is where cumulative frequency ≥ n/2 = 50 → 35-40

Using median formula:

Median = 35 + [(50 – 45)/33] × 5 ≈ 35 + 0.76 ≈ 35.76 years

4. Leaves Length Measurement

Length (in mm) 118-126 127-135 136-144 145-153 154-162 163-171 172-180
Number of leaves 3 5 9 12 5 4 2

Solution:

Convert to continuous classes as suggested:

ClassFrequencyCumulative Frequency
117.5-126.533
126.5-135.558
135.5-144.5917
144.5-153.51229
153.5-162.5534
162.5-171.5438
171.5-180.5240

Median class is where cumulative frequency ≥ n/2 = 20 → 144.5-153.5

Using median formula:

Median = 144.5 + [(20 – 17)/12] × 9 = 144.5 + 2.25 = 146.75 mm

5. Neon Lamps Life Time

Life time (in hours) 1500-2000 2000-2500 2500-3000 3000-3500 3500-4000 4000-4500 4500-5000
Number of lamps 14 56 60 86 74 62 48

Solution:

Calculate cumulative frequencies:

ClassFrequencyCumulative Frequency
1500-20001414
2000-25005670
2500-300060130
3000-350086216
3500-400074290
4000-450062352
4500-500048400

Median class is where cumulative frequency ≥ n/2 = 200 → 3000-3500

Using median formula:

Median = 3000 + [(200 – 130)/86] × 500 ≈ 3000 + 406.98 ≈ 3406.98 hours

6. Surnames Letters Distribution

Number of letters 1-4 4-7 7-10 10-13 13-16 16-19
Number of surnames 6 30 40 16 4 4

Solution:

Median:

First make classes continuous and calculate cumulative frequencies:

ClassFrequencyCumulative Frequency
0.5-4.566
4.5-7.53036
7.5-10.54076
10.5-13.51692
13.5-16.5496
16.5-19.54100

Median class is where cumulative frequency ≥ n/2 = 50 → 7.5-10.5

Median = 7.5 + [(50 – 36)/40] × 3 = 7.5 + 1.05 = 8.55

Mean:

Using midpoint method:

ClassMidpoint (x)Frequency (f)f × x
1-42.5615
4-75.530165
7-108.540340
10-1311.516184
13-1614.5458
16-1917.5470
Total100832

Mean = Σfx/Σf = 832/100 = 8.32

Mode:

Modal class is 7-10 (highest frequency = 40)

Mode = L + [(f₁ – f₀)/(2f₁ – f₀ – f₂)] × h

Where L = 7, f₁ = 40, f₀ = 30, f₂ = 16, h = 3

Mode = 7 + [(40 – 30)/(80 – 30 – 16)] × 3 ≈ 7 + (10/34) × 3 ≈ 7.88

7. Students Weight Distribution

Weight (in kg) 40-45 45-50 50-55 55-60 60-65 65-70 70-75
Number of students 2 3 8 6 6 3 2

Solution:

Calculate cumulative frequencies:

ClassFrequencyCumulative Frequency
40-4522
45-5035
50-55813
55-60619
60-65625
65-70328
70-75230

Median class is where cumulative frequency ≥ n/2 = 15 → 55-60

Using median formula:

Median = 55 + [(15 – 13)/6] × 5 ≈ 55 + 1.67 ≈ 56.67 kg

Author

Leave a Comment